PA99 • PA99A

Power Operational Amplifier

FEATURES

- Up to $2400 V_{\text {p-p }}$ Output
- Wide Supply Range $- \pm 100 \mathrm{~V}$ to $\pm 1250 \mathrm{~V}$
- Programmable Current Limit
- 50 mA Continuous Output
- Hermetically Sealed Package
- Temperature Sensor

APPLICATIONS

- Semiconductor Testing
- Piezo Positioning
- High Voltage Instrumentation
- Electrostatic Deflection

DESCRIPTION

The PA99 is an ultra-high 2,500 V power operational amplifier designed for output currents up to 50 mA to target high voltage applications including piezoelectric positioning, instrumentation, semiconductor production testing, and electrostatic deflection. Output voltages can swing up to $2,400 \mathrm{~V}_{\text {p-p }}$.

High accuracy for this MOSFET power amplifier is achieved with a cascode input circuit configuration. External compensation provides user flexibility by allowing customers to tailor slew rate and bandwidth performance. A resistor configurable current limit provides system level protection.

TYPICAL CONNECTION

Figure 1: Typical Connection

PINOUT AND DESCRIPTION TABLE

Figure 2: External Connections

| 1 | NC | | + IN |
| :--- | :--- | :--- | :--- | 12

Pin Number	Name	Description
1,2	NC	No connection.
3	-CL	Connect a negative current limit resistor between this pin and -Vs pin.
4	- Vs	The negative supply rail.
5	CC	Connect a compensation capacitor between this pin and +CL pin. The compensation capacitor needs to be rated for at least the maximum supply voltage.
6	+CL	Connect a positive current limit resistor between this pin and the OUT pin. Output current flows out of this pin through $\mathrm{R}_{\text {CL+ }}$.
7	OUT	The output. Connect this pin to load and to the feedback resistors.
8	TEMPA	The anode for the temperature sensing diode.
9	TVMPB	The cathode for the temperature sensing diode.
10	-IN	The positive supply rail.
11	+IN	The inverting input.
12		Then-inverting input.

PA99 • PA99A

SPECIFICATIONS

Unless noted otherwise, the test conditions are as follows: $T_{C}=25^{\circ} \mathrm{C}, \Delta \mathrm{V}_{\mathrm{S}}=2000 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=100, \mathrm{R}_{\mathrm{F}}=$ $200 \mathrm{k} \Omega, \mathrm{C}_{C}=15 \mathrm{pF}$. DC input specifications are value given. The power supply voltage is typical rating.

ABSOLUTE MAXIMUM RATINGS

Parameter	PA99 \& PA99A		Unit	
	Symbol	Min		
Supply Voltage	${ }^{2} \mathrm{~V}_{\mathrm{S}}$ to $-\mathrm{V}_{\mathrm{S}}$		2500	V
Output Current, Peak, within SOA	I_{O}		± 70	mA
Power Dissipation, internal, DC	P_{D}		37	W
Input Voltage, common mode	V_{cm}		$-\mathrm{V}_{\mathrm{S}}+50$ to $+\mathrm{V}_{\mathrm{S}}-50$	V
Input Voltage, differential	$\mathrm{V}_{\mathrm{IN}}($ Diff $)$		± 20	V
Temperature, pin solder, 10s			+225	${ }^{\circ} \mathrm{C}$
Temperature, junction ${ }^{1}$	$\mathrm{~T}_{\mathrm{J}}$		+150	${ }^{\circ} \mathrm{C}$
Temperature, storage		-40	+150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range, case	T_{C}	-40	+85	${ }^{\circ} \mathrm{C}$

1. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF.

INPUT

Parameter	Test Conditions	PA99			PA99A			Unit
		Min	Typ	Max	Min	Typ	Max	
Offset Voltage, initial			2.0	5.0			2.0	mV
Offset Voltage vs. temperature	Full temp range			75			50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage vs. supply			0.1			*		$\mu \mathrm{V} / \mathrm{V}$
Bias Current, Initial ${ }^{1}$			50			*		pA
Bias Current vs. supply			0.01			*		pA/V
Offset Current, Initial			5.0	50		*	*	pA
Input Resistance, DC			10^{11}			*		Ω
Input Capacitance			13			*		pF
Common Mode Voltage Range			$\begin{aligned} & -V s+50 \\ & +V s-50 \end{aligned}$			*		V
Common Mode Rejection, DC			134			*		dB
Input Noise	$\begin{aligned} & 20 \mathrm{kHz} \mathrm{BW}, \\ & \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega \end{aligned}$		2			*		$\mu \mathrm{V}$ RMS

1. Doubles for every $10^{\circ} \mathrm{C}$ of case temperature increase.

GAIN

Parameter	Test Conditions	PA99			PA99A			Unit
		Min	Typ	Max	Min	Typ	Max	
Open Loop, @ 15 Hz			117			*		dB
Gain Bandwidth Product	$\mathrm{AV}=100,280 \mathrm{kHz}$		28			*		MHz
Power Bandwidth	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2000 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=2200 \mathrm{~V} \end{aligned}$	1.6	5		*	*		kHz
Phase Margin			60			*		-
Harmonic Distortion, HD2	1 kHz		61			*		dB
Harmonic Distortion, HD3	1 kHz		56			*		dB

OUTPUT

Parameter	Test Conditions	PA99			PA99A			Unit
		Min	Typ	Max	Min	Typ	Max	
Voltage Swing, negative rail	$1 \mathrm{O}=20 \mathrm{~mA}$		-Vs+20			*		V
Voltage Swing, positive rail	$1 \mathrm{O}=20 \mathrm{~mA}$		+Vs-20			*		V
Current, continuous	Within SOA			± 50			*	mA
Slew Rate, rising		10	30		*	*		$\mathrm{V} / \mu \mathrm{s}$
Slew Rate, falling		10	30		*	*		V/ $\mu \mathrm{s}$
Resistive Load		1000			*			Ω

POWER SUPPLY

Parameter	Test Conditions	PA99			PA99A			Unit
		Min	Typ	Max	Min	Typ	Max	
Voltage		± 100		± 1250	${ }^{*}$		${ }^{*}$	V
Current, quiescent			4.0			${ }^{*}$		mA

THERMAL

Parameter	Test Conditions		PA99			PA99A		
		Min	Typ	Max	Min	Typ	Max	
Resistance, DC, junction to case	Full temp range, $\mathrm{F}<60 \mathrm{~Hz}$		3.3			$*$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Resistance, junction to air	Full temp range		15.4			${ }^{*}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: An asterisk (*) in a specification column of PA99A indicates that the value is identical to the specification for the PA99 in the applicable column to the left

TYPICAL PERFORMANCE GRAPHS

Figure 3: Power Derating

Figure 5: Small Signal Pulse Response

Figure 4: Large Signal Pulse Response

Figure 6: Large Signal Response with Current Limit

Figure 7: Open Loop Gain vs. Frequency

Figure 9: Common Mode Rejection vs.
Frequency

Figure 8: Phase Response

Figure 10: Power Supply Rejection

Figure 11: Quiescent Current

Figure 13: Input Noise vs. Frequency

Figure 12: Output Voltage Swing

Figure 14: Negative Current Limit Resistor

Figure 15: Slew Rate vs. Compensation

Figure 17: Temperature Diode (1mA Bias)

Figure 16: Harmonic Distortion

Figure 18: Temperature Diode (500 $\mu \mathrm{A}$ Bias)

Figure 19: SOA

GENERAL

Please read Application Note 1 "General Operating Considerations" which covers stability, supplies, heat sinking, mounting, current limit, SOA interpretation, and specification interpretation. Visit www.apexanalog.com for Apex Microtechnology's complete Application Notes library, Technical Seminar Workbook, and Evaluation Kits.

TYPICAL APPLICATION

Figure 20: Typical Application Circuit

Figure 20 shows PA99 in a typical inverting amplifier circuit. The resistors $\mathrm{R}_{\text {LIM }+}$ and $\mathrm{R}_{\text {LIM- }}$ are used to limit the current output. If no current limit is desired, a direct connection between $\mathrm{C}_{\mathrm{L}}+$ and OUT is required for proper operation, and C_{L} - must be connected to $-\mathrm{V}_{\mathrm{S}}$ with a resistor larger or equal $200 \mathrm{k} \Omega$ in that case.

OUTPUT CURRENT AND DEVICE COOLING

PA99 can handle output currents of $\pm 50 \mathrm{~mA}$, but careful considerations need to be done about proper cooling of the device to avoid damage due to overheating. When calculating the power loss inside the device, the output current and the quiescent currents need to be considered.

For example, if the device uses a supply voltage of 1000 V , the output voltage to a resistive load is 500 V and the output current is 50 mA , the power loss inside the device is calculated as follows:

$$
P_{\text {DEVICE }}=(1000 \mathrm{~V}-500 \mathrm{~V}) \cdot(50+4) \mathrm{mA}=27 \mathrm{~W}
$$

In the above example, the device will dissipate 27 W of heat. If we supply 1500 V instead of 1000 V , the power dissipation of the device doubles, resulting in a loss of 54 W .

As alternative to extensive device cooling, it should be considered to alter the supply voltage of the device. If the PA99 is used in a test environment where is needs to drive 50 mA at 500 V but 5 mA at 2000 V , consider supplying two voltages, i.e. 1000 V and 2500 V , and provide for sufficient cooling for the approximate 30 W of power dissipation of the device.

OVERVOLTAGE PROTECTION

Although the PA99 can withstand differential input voltages up to $\pm 20 \mathrm{~V}$, additional external protection is recommended. In most applications 1 N 4148 signal diodes connected anti-parallel across the input pins are sufficient. In more demanding applications where bias current is important diode connected JFETs such as 2 N 4416 will be required. In either case the differential input voltage will be clamped to $\pm 0.7 \mathrm{~V}$. This is usually sufficient overdrive to produce the maximum power bandwidth.

CURRENT LIMIT

PA99 allows independent setting of a positive and negative current limit.

POSITIVE CURRENT LIMIT

The resistor value $R_{\text {LIM }+}$ for positive current limit is calculated as follows:

$$
R_{L I M}(\Omega)=\frac{0.65 \mathrm{~V}}{I_{L I M}(A)}
$$

Positive Current Limit	Measured Resistor Value (R $\mathbf{R}_{\text {LIM }+\boldsymbol{+}}$)
5 mA	130Ω
10 mA	68Ω
20 mA	32.4Ω
40 mA	15.8Ω

NEGATIVE CURRENT LIMIT

The current limit resistor for the negative current limit can be approximated as:

$$
R_{L I M}(\Omega)=5324 \times e^{76.4 \times I_{L L M}}(A)
$$

Negative Current Limit	Measured Resistor Value (R
LIM-)	
5 mA	$8 \mathrm{k} \Omega$
10 mA	$15 \mathrm{k} \Omega$
20 mA	$33 \mathrm{k} \Omega$
40 mA	$92 \mathrm{k} \Omega$

TEMPERATURE SENSING

The temperature sensing pins of the PA99 are connected to a 1N4448 type of diode that can be used to sense the temperature inside the device. A typical application will use a current source as the best means for the excitation of the diode.

PACKAGE OPTIONS

Part Number	Apex Package Style	Description
PA99	CW	12-pin Power DIP, High Voltage
PA99A	CW	12-pin Power DIP, High Voltage

PACKAGE STYLE CW

NEED TECHNICAL HELP? CONTACT APEX SUPPORT!

For all Apex Microtechnology product questions and inquiries, call toll free 800-546-2739 in North America. For inquiries via email, please contact apex.support@apexanalog.com. International customers can also request support by contacting their local Apex Microtechnology Sales Representative. To find the one nearest to you, go to www.apexanalog.com

IMPORTANT NOTICE

Apex Microtechnology, Inc. has made every effort to insure the accuracy of the content contained in this document. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (expressed or implied). Apex Microtechnology reserves the right to make changes without further notice to any specifications or products mentioned herein to improve reliability. This document is the property of Apex Microtechnology and by furnishing this information, Apex Microtechnology grants no license, expressed or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Apex Microtechnology owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Apex Microtechnology integrated circuits or other products of Apex Microtechnology. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale
APEX MICROTECHNOLOGY PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN PRODUCTS USED FOR LIFE SUPPORT, AUTOMOTIVE SAFETY, SECURITY DEVICES, OR OTHER CRITICAL APPLICATIONS. PRODUCTS IN SUCH APPLICATIONS ARE UNDERSTOOD TO BE FULLY AT THE CUSTOMER OR THE CUSTOMER’S RISK.
Apex Microtechnology, Apex and Apex Precision Power are trademarks of Apex Microtechnology, Inc. All other corporate names noted herein may be trademarks of their respective holders.

